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We suggest a quantum stabilization method for the SU(2) g-model, based on the 
constant-cutoff limit of the cutoff quantization method developed by Balakrishna 
et al., which avoids the difficulties with the usual soliton boundary conditions 
pointed out by Iwasaki and Ohyama. We investigate the baryon number B = 1 
sector of the model and show that after the collective coordinate quantization it 
admits a stable soliton solution which depends on a single dimensional arbitrary 

'iv 3 + constant. We then study the radiative decays of J = ~- baryons using the 
constant-cutoff approach to the SU(3) collective treatment of the Skyrme model 
for hyperons. Thus we evaluate the widths and E2/MI ratios, showing that there 
is a general qualitative agreement with the results obtained using the complete 
Skyrme model, as well as the nonrelativistic quark model and quenched lattice 
model, for the total widths. 

1. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of a nonlinear chiral theory. The original Lagrangian of the chiral 
SU(2) (y-model is 

= - ~  Tr O~U O~U § (1.1) 

where 

2 
U = ~ ((r + ix" xt) (1.2) 

r~  
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is a unitary operator (UU + = 1) and F~ is the pion-decay constant. In (1.2) 
(r = tr(r) is a scalar meson field and ~ = ~( r )  is the pion isotriplet. 
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The classical stability of the soliton solution to the chiral or-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1): 

1 
~ S k  - -  32e 2 Tr[U+O~U, U+OvU] 2 (1.3) 

with a dimensionless parameter e and where [A, B] = AB - BA. It was 
shown by several authors (Adkins et al., 1983; Witten, 1979, 1983a,b) that, 
after the collective quantization using the spherically symmetric ansatz 

Uo(r) = exp[ix.roF(r)], ro = r/r (1.4) 

the chiral model, with both (1.1) and (1.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian, obtained as a sum of (1.1) 
and (1.3), from a more fundamental theory like QCD. On the other hand, it 
is not easy to generate a term like (1.3) and give a clear physical meaning 
to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated therefore a possibility to 
build a stable single baryon (n = 1) quantum state in the simple chiral theory 
with the Skyrme stabilizing term (1.3) omitted. They showed that the chiral 
angle F(r) is in fact a function of a dimensionless variable s = l• where 
• is an arbitrary dimensional parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear a-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
U0(r) is given by (1.4), MW obtained the total energy of the nonlinear or- 
model soliton in the form 

"tr 1 E = - ~ F ~ a +  

where 

1 [x"(o)]  3 
2 (~rl4)F~b J(J + 1) (1.5) 

a = Io [ ls2(d~12\ds] + 8 s i n 2 ( ~ ) ]  ds 

fl b= ds T 

and ~(s) is defined by 

(1.6) 

(1.7) 

F(r) = F(s) = -nTr + �88 (1.8) 
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The stable minimum of the function (1.5) with respect to the arbitrary dimen- 
sional scale parameter • is 

4 ~ a 
E = ~ F~ J(J + 1) (1.9) 

Despite the nonexistence of the stable classical soliton solution to the 
nonlinear a-model, it is possible, after the collective coordinate quantization, 
to build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= -n'rr,  F(~)  = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by lwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by Mignaco and Wulck (1989) is 
not correct, since in the simple a-model the conditions F(0) = - n ~  and 
F(oo) = 0 cannot be satisfied simultaneously. In other words, if the condition 
F(0) = - ' t r  is satisfied, Iwasaki and Ohyama obtained numerically F(~)  
-'rr/2, and the chiral phase F = F(r) with correct boundary conditions does 
not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(0) = - na t  and F(oo) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = llr into the differential equation for the chiral angle 
F = F(r), we obtain 

d2F 1 
dy~ - y2 sin 2F (1.10) 

There are two kinds of  asymptotic solutions to equation (1.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~- 2F. These 
solutions are 

F(y) = m,rr + cy2, m = even integer (1.11) 
2 

mrr+4~cos[~ - -~ ln ( cy )+e t  ] m = odd integer (1.12) F(y) = ~ 

where c is an arbitrary constant and o~ is a constant to be chosen appropriately. 
When F(O) = -n'rr, then we want to know which of  these two solutions are 
approached by F(y) when y -+ 0 (r -~ oo). In order to answer that question, 
we multiply (1.10) by y2F'(y), integrate with respect to y from y to o% and 
use F(O) = -n 'u .  Thus we get 

y2F'(y) + 2y[f'(y)]2dy = 1 - cos[2F(y)] (1.13) 
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Since the left-hand side of (1.13) is always positive, the value of F(y)  is 
always limited to the interval nTr - -rr < F(y)  < n,rr + ,rr. Taking the limit 
y ~ 0, we find that (1.13) is reduced to 

o~ dy = 1 - ( - 1 )  m (1.14) 

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= - n ~  approaches (1.12) and we have F(oo) 4= 0. The behavior of the 
solution (1.11) in the asymptotic region y --~ oo (r--~ 0) is investigated by 
multiplying (1.10) by F ' ( y ) ,  integrating from 0 to y, and using (1.11). The 
result is 

[F,(y)] 2 _ 2 sinZF(y) I i  2 sin2F(v) 
y2 + y3 " dy (1.15) 

From (1.15) we see that F ' ( y )  ---> const as y ---> :~, which means that F(r) ~-- 
l / r  for r --> 0. This solution has a singularity at the origin and cannot satisfy 
the usual boundary condition F(0) = -n-rr. 

In Dalarsson (1991a,b, 1992), I suggested a method to resolve this 
difficulty by introducing a radial modification phase q~ = q~(r) in the ansatz 
(1.4) as follows: 

U(r) = exp[i"r 'roF(r)  + iq~(r)], ro = rlr  (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral or-model. 

In the present paper we use the constant-cutoff limit of the cutoff quanti- 
zation method developed by Balakrishna et  al. (1991; see also Jain et al., 
1989) to construct a stable chiral quantum soliton within the original chiral 
or-model. Then we apply this method to study the radiative decays of  J'~ = 
3 + i- baryons using the constant-cutoff version of the SU(3) collective approach 
to the Skyrme model. Thus we evaluate the widths and E2/M1 ratios, showing 
that there is a general qualitative agreement with the results obtained using 
the complete Skyrme model (CSM) (Abada et al., 1996), the nonrelativistic 
quark model (NRQM) (Darewych et al., 1983; Leinweber et al., 1985), and 
the quenched lattice model (QLM) (Leinweber et al., 1985). 

The reason the cutoff approach to the problem of the chiral quantum 
soliton works is connected to the fact that the solution F = F(r) which 
satisfies the boundary condition F(~) = 0 is singular at r = 0. From the 
physical point of view the chiral quantum model is not applicable to the 
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region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 

However, as argued in Balakrishna et al. (1991), when a cutoff e is 
introduced, the boundary conditions F(e) = -na t  and F(~) = 0 can be 
satisfied. Balakrishna et aL (1991) discuss an interesting analogy with the 
damped pendulum, showing clearly that as long as e > 0, there is a chiral 
phase F = F(r) satisfying the above boundary conditions. The asymptotic 
forms of such a solution are given by their equation (2.2). From these asymp- 
totic solutions we immediately see that for ~ ---> 0 the chiral phase diverges 
at the lower limit. 

Different applications of the constant-cutoff approach are discussed in 
Dalarsson (1993, 1995a-d, 1996a,c). 

2. CONSTANT-CUTOFF STABILIZATION 

Substituting (1.4) into (1.1), we obtain for the static energy of the 
chiral baryon 

~r f f  [ (dF]Z+2sinZF] (2.1) Eo = ~ r 2 dr r 2 
,t) L kar l  

In (2.1) we avoid the singularity of the profile function F = F(r) at the origin 
by introducing the cutoff e(t) at the lower boundary of the space interval r 

[0, ~], i.e., by working with the interval r e [e, oo]. The cutoff itself is 
introduced following Balakrishna et al. (1991) as a dynamic time-depen- 
dent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

dr  r ~rr = s i n 2 F  (2.2) 

with the boundary conditions F(~) = -~r and F(~) = 0, such that the correct 
soliton number is obtained. The profile function F = F[r; e(t)] now depends 
implicitly on time t through e(t). Thus in the nonlinear ~-model Lagrangian 

L = 16 J Tr(0~U O~U § d3r (2.3) 

we use the ans~itze 

U(r, t) = A(t)Uo(r, t)A§ U§ t) = A(t)U~(r, t)A+(O (2.4) 

where 

U0(r, t) = exp{ iq'. r0F[r; e(t)] } (2.5) 
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The static part of the Lagrangian (2.3), i.e., 

L = 16 J Tr(VU'VU+) d3r = -Eo  (2.6) 

is equal to minus the energy E0 given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

nf L = ~ Tr(00U OoU § d3r = bx z Tr[0oA 0oA § + c[:~(t)l: (2.7) 

where 

2"tr b = - f  P'=-2 sin2F y2 dy, c = ~ F~ yz(dF] ] dy (2.8) 

with x(t) = [~(t)] 312 and y = rle. On the other hand, the static energy functional 
(2.1) can be rewritten as 

7r f f [  (dF~2+2sin2F]dy (2.9) Eo = ax 2/3, a = -~ F~ yZ 
[ \dy] 

Thus the total Lagrangian of the rotating soliton is given by 

L = c X  z - a x  ~3 + 2 b x 2 a ~ a  v (2.10) 

where Tr(0oA Oo A§ = 26Lva ~ and a~ (v = 0, 1, 2, 3) are the collective 
coordinates defined as in Bhaduri (1988). In the limit of a time-independent 
cutoff (:~ ---> 0) we can write 

_ _  1 H = OL a~ _ L = ax ~3 + 2bx z 6t~a v = a,x 213 "1- ~ J(J + 1) 
06L �9 

(2.11) 

where (j2) = j ( j  + 1) is the eigenvalue of the square of the soliton angular 
momentum. A minimum of (2.11) with respect to the parameter x is reached at 

: r2 _ab 1-3/8 [@ 1 TM 

x L3 J(J + 1)J ~ e-i  = J(jab+ 1)J (2.12) 

The energy obtained by substituting (2.12) into (2.11) is given by 

4 [  3a3~- 11/4 
E = J(J + 1)] (2.13) 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a ---> 
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(arl4)F2a and b --+ (~r/4)F2b and introduce f.~ = 2-3/2F~. However, in the 
present approach, as shown in Balakrishna et al. (1991), there is a profile 
function F = F(y)  with proper soliton boundary conditions F(1) = -x r  and 
F(oo) = 0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown 
in Balakrishna et al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 2, and c = 
1.46 GeV 2 for F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical value 
of 939 MeV. However, if we choose the pion decay constant equal to F~ = 
150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving exact 
agreement with the empirical nucleon mass. 

Finally, it is of interest to know how large the constant cutoffs are for the 
above values of the pion-decay constant in order to check if they are in 
the physically acceptable ballpark. Using (2.12), it is easily shown that 
for the nucleons (J = 1/2) the cutoffs are equal to 

~0.22 fm for F~ = 186 MeV (2.14) 
= [0.27 fm for F~ = 150 MeV 

From (2.14) we see that the cutoffs are too small to agree with the size of  
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
the size of  the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of reasonable physical size. Since the cutoff is 
proportional to F~ ~, we see that the pion-decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. Such 
values of pion-decay constant are not relevant to any physical phenomena. 

3. T H E  C O L L E C T I V E  A P P R O A C H  TO T H E S ~ 3 )  SKYRME 
M O D E L  

3.1.  I n t r o d u c t i o n  

As argued in Abada et al. (1996), the available data on the electromag- 
netic decays of hyperons, like the reaction A ---> N',/, are rather limited. The 
ratio of the electric quadrupole (E2) to the magnetic dipole (M1) amplitude, 
obtained by the ~~ experiment at Miami (Abada et al., 
1996) is E2/M1 = ( -2 .5  • 0.2)%. For J = 3/2 to J = 1/2 transitions, which 
involve strange baryons, the empirical values for the E2/MI ratios are not 
available. Nevertheless, these transitions have been studied within several 
models and in Schat et al. (1995a) an analysis of the hyperon radiative decays 
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was made within the framework of the bound-state approach (Callan and 
Klebanov, 1985; Callan et  al. ,  1988) to the Skyrme (1961, 1962) model. In 
that approach hyperons are modeled as kaons bound in the background of 
the static soliton field. For the particular case of A(1405), in the bound-state 
approach to the complete Skyrme model and in the constant-cutoff treatment 
of the bound-state approach, see Schat et  al. (1995b) and Dalarsson (1996b). 
However, in Abada et  al. (1996) hyperons are alternatively described using 
the SU(3) collective approach to the complete Skyrme model, where the 
strange degrees of freedom are incorporated as SU(3) collective excitations 
of the nonstrange soliton to investigate the transitions B ( J  = 3/2) ~ ~ B ' ( J  
= 1/2). In the present section we apply the constant-cutoff approach to the 
SU(3) collective approach and compare the results with those obtained in 
the CSM (Abada et  al., 1996), the NRQM (Darewych et  al.,  1983; Leinweber 
et  al.,  1985), and the QLM (Leinweber et  al . ,  1985). 

3.2. The Effective Interaction 

The Lagrangian density for the SU(3) collective model of hyperons is, 
with Skyrme stabilizing term omitted, given by (Abada et  al. ,  1996) 

= -~- Tr O~U O~U § 

- Tr(T + xS) [13'(U O~U O~U + + O~U O~U+U +) + ~ ' ( U  + U § - 2)] 

- iL9(O~Av - OvAl)  

[ ( ' )  
(3.1) 

where 

T =  0 1 , S =  0 (3.2) 
0 0 0 

are the projectors onto the nonstrange and strange degrees of freedom, respec- 
tively, and x - 1 ~ 36 measures the flavor symmetry breaking (Weigel et  
al.,  1990). The parameters 13' and ~' are determined from the masses and 
decay constants of the pion and the kaon and are equal to 13' = -26.4 MeV 2 
and ~' = 4.15 X 107 MeV 4. The last term in (3.1) represents the direct 
derivative coupling of the baryon fields to the photon field A~. In fourth- 
order chiral perturbation, the third term in (3.1) is necessary to reproduce 
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the electromagnetic pion radius correctly in this model, thus determining the 
value of the parameter L9 = (6.9 ___ 0.7) • 10 -3. It should be noted that the 
physical pion decay constant (F~ = 186 MeV) is determined by F 2 = T~ 
- 32[3'. In addition to the action obtained using the Lagrangian (3.1), the 
Wess-Zumino action in the form 

i cf S - 240a.r 2 dSx e ~ Tr[U + Or § O~UU + O~UU + Of~UU + O~U] 

(3.3) 

must be included in the total action, where Nc is the number of colors in the 
underlying QCD. The Wess-Zumino action defines the topological properties 
of the model, important for the quantization of the solitons. In the SU(2) 
case the Wess-Zumino action vanishes identically and was therefore not 
present in the discussions of Sections 1 and 2. 

In the SU(3) collective rotational approach the hyperons as chiral solitons 
are described by the time-dependent meson configuration 

U = A(t) V~K ~ ~ A+(t) (3.4) 

where U= is an SU(3) extension of the usual SU(2) skyrmion field used to 
describe the nucleon spectrum, and UK is the field describing the kaons 

UK = exp[2 W(r)di~f~r~lI,h~] (3.5) 

In (3.5) u~ is the usual SU(2) skyrmion field given by (1.4) and lie = - i  
Tr k,A§ represents eight angular velocities, where h~ and da~ are the Gell- 
Mann matrices and symmetric structure functions of SU(3), respectively. It 
is also convenient to introduce the adjoint of the collective rotations given 
by D ~  = �89 Tr X~AXf~A +. 

The electromagnetic current J i  m is now obtained in two steps, first by 
introducing the photon field in the action obtained using (3.1) and (3.3) such 
that it becomes invariant under the local Uem(1) gauge transformation, and 
second by identifying J~m as an object which couples to photon field linearly. 
The resulting covariant expression may be found elsewhere (Park et al., 1991; 
Park and Weigel, 1992). From this expression it is possible to obtain the 
quadrupole and monopole pieces of the electric and magnetic form factors, 
respectively. The former is obtained from the orbital angular momentum I 
= 2 term of the time component of the electromagnetic current j~m and the 
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latter is obtained from the spatial components jem. It is therefore suitable to 
introduce the associated Fourier transforms as follows: 

~(q)=Ir>d3rj2(qr)(Z~_~_ 1~ em 5)Jo (3.6) 

1 fr d3rjt(qr)e3Or~ (3.7) A?/(q) = ~ >, 

Following Abada et al. (1996), we obtain in the constant-cutoff approach 
the results 

8'rr Dem,3 dr r2j2(qr)Vo(r) (3.8) 
/~(q) - 15or 2 

l~I(q) - { dr r2jl(qr) Vl(r)Dem,3 

1 
132 V2(r)d3a8 D~mRf~ + V3(r)D88Dem, 3 

-V4(r)d3"aDem,,Dsf~+2~3a2B(r)D~,,sR3) (3.9) 

where the moment of inertia into the strange flavor direction 1332 is defined 
by R, = -13211~, and Dem,i = D3i + Dsi/v/3. 

The function Vo(r) is given by 

1 Vo(r) - ~ sin2F (F 2 - 3213' cos F) 

[ 2F(d2F 2dF~ (dF~ 2 sin2F] 
-2L9  sin kdr2 + rdr] + 2 c ~  - 3 - - ~ J  (3.10) 

while the functions Vl(r), V2(r), Va(r), V4(r), and B(r) are easily obtained 
from the corresponding functions in (Park et al., 1991; Park and Weigel, 
1992), by letting the Skyrme parameter e --) 0% except for the contributions 
of the third term in (3.1) to Vl(r) and V2(r), which are obtained in Abada et 
al. 0996). 

3.3. Radiative Decay Widths 

3 + The radiative decay widths F for the decays of the ~^ baryons 
to �89 baryons are then obtained as matrix elements of/~(q) and M(q), i.e., 
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675 
I'E2(B ----> ~/B') = --if- Otemql(B'( �89 (3.11) 

I'MI(B --"> "/B') = 18e%mql(B'( �89 (3.12) 

where we follow the standard prescription (Abada et  al., 1996) and take q 
to be the momentum of the photon in the rest frame of the 3+ baryon, and 
Otem = 1/137. The matrix elements in (3.11) and (3.12) are calculated in the 
space of collective coordinates; a detailed account can be found in general 
in Park et  al. (1991) and Park and Weigel (1992) and in particular for the 
decays of  the A(1405) resonance in Schat et  al. (1995b) and Dalarsson 
(1996b). Now we are able to calculate the desired E2/MI ratio as follows: 

E2 5 I (B'(l+) I/~(q) I B(3+)) 12 
- -  - ( 3 . 1 3 )  
M1 4 I(B,(�89247247 2 

Table I compares the numerical predictions of  the present model with the 
results obtained using the CSM (Abada et  aL, 1996), the NRQM (Darewych e t  
al., 1983), and the QLM (Leinweber et  aL, 1985) for the same decays as 
those presented in Abada et  al. (1996). In the present paper we only consider 
the complete Lagrangian with the third term in (3. l) included, i.e., for L 9 = 

6.9 X 10 -3, and use the empirical values for pion and kaon masses and  
decay constants. 

In Table I the results shown in parenthesis, following Abada et  al. 
(1996), refer to the case when the ratio E2/M1 is rescaied by the proton 
magnetic moment. The rescaling of the type E2/MI --> E2/M1 • 

pre exp (1~ / ~  ) is motivated by the fact that here, as in the case of  the CSM 
(Abada et  al., 1996), the predicted value of the proton magnetic moment  is 
lower than the empirical value. However, in the constant-cutoff approach this 
rescaling causes a somewhat smaller reduction than in the CSM case (Abada 

Table I. Radiative Decay Amplitudes (in keV) and E2/MI Decay Ratios a 

CSM 
Present results Set 1 Set 2 Fto t 

Ftot E2/M1 Fro t E2/M 1 Fro t E2/MI N R Q M  QLM 

A ---> ",/N 318 -3.7 (-2.9) 313 -3.7 (-2.7) 322 -3.7 (-2.6) 330 430 
~,0 _~ ~,A 178 -3.9 (-3.1) 180 -3.8 (-2.8) 194 -3.7 (-2.6) 232 - -  
'~*- ---) 3'~- 2 -6.0 (-4.8) 1 -7.3 (-5.3) 2 -4.3 (-3.1) 2 3 
~,0 ___) ,,/~o 16 -1.4 (-1.1) 15 -1.5 (-1.1) 12 -1.9 (-1.4) 18 17 
~*+ ~ "y]~§ 80 -2.0 (-1.6) 78 -2.2 (-1.6) 71 -2.3 (-1.7) 100 100 
~*- ~ ~/--~- 4 -4.6 (-3.7) 3 -6.1 (-4.5) 4 -4,3 (-3.0) 3 4 
~,,0 __~ ~_o 121 -2.0 (-1.6) 115 -2.4 (-1.8) 108 -2.6 (-l .8) 137 129 

a References for the models: CSM, Abada et al. (1996); NRQM, Darewych et al. (1983); QLM, 
Leinweber et al. (1985). 
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et  al., 1996). For the calculation of the proton magnetic moment in the 
constant-cutoff approach see Dalarsson (1993, 1995a-d, 1996a-c) and Schat 
et  al. (1995b). It should also be noted that the QLM results given in Leinweber 
et  al. (1985) are normalized to fit the magnetic moment of the proton. 

From Table I we see that the present results are of the same order of 
magnitude as the results obtained by other means and there is a general 
qualitative agreement with the CSM (Abada et  al., 1996), NRQM (Darewych 
et  al., 1983), and QLM results (Leinweber et al., 1985). 

4. CONCLUSIONS 
3 + We have calculated the decay widths for the radiative decays of the 

baryons in the constant-cutoff approach to the collective treatment of the 
SU(3) Skyrme model by separately evaluating the magnetic dipole (M1) and 
electric quadrupole (E2) transition matrix elements. As in the CSM (Abada 
et al., 1996), the total decay widths are strongly dominated by the M1 
contribution, giving E2/M 1 ratios of the order of few percent only. As in the 
CSM (Abada et al., 1996), all the ratios are negative. 

We have compared the present results with those obtained using other 
models, the CSM (Abada et  al., 1996), NRQM (Darewych et  al., 1983), and 
QLM (Leinweber et  al., 1985). Thus we have shown that there is a general 
qualitative agreement between our results and the results of other models. 
Regarding the agreement with the only known empirical value for the decay 
A --> ~/N, we note that the constant-cutoff approach after rescaling is somewhat 
more in variance with the empirical value than the CSM (Abada et al., 1996). 

On the other hand, the constant-cutoff approach employed in this paper 
offers a simpler analytical structure of the results and less complicated calcula- 
tions of the quantities which describe the strong and electromagnetic proper- 
ties of hyperons (Dalarsson, 1993, 1995a-d, 1996a-c). 

Finally, it should be noted that the empirical values for most of the 
calculated quantities are unfortunately difficult to obtain. As argued in Abada 
et  al. (1996), better empirical information about the radiative decay processes 
is needed in order to determine the quality of predictions of different models. 
Some experiments to that effect are being prepared at several experimental 
facilities (see Abada et  al., 1996, and references therein). 
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